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ABSTRACT 

Humidity and temperature are the main climate parameters that affect the earth environment and surface 

lives. Wavelet transforms provide spectral analysis of time series and extract abstract local information 

from the signal (data). In stationary wavelet transform (SWT) translation-invariance is achieved by up-

sampling the filter coefficients so that faster algorithm to analyze a signal with more accuracy is 

obtained. The MATLAB wavelet toolbox performs a minimal right periodic extension leading to an 

extended signal of length 2𝑗0,  where 𝑗0 is the maximum level of wavelet decomposition up to which the 

signal can be extended. The inverse SWT is used to obtain the extended signal from the predictions of 

components. 
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INTRODUCTION 

Humidity represents the amount of water vapour present in air and plays an important role for the 

survival of surface life. For animal life depending on perspiration (sweating) to regulate internal 

body temperature, high humidity impairs heat exchange efficiency by reducing the rate of 

moisture evaporation from skin surfaces. This effect is measured in terms of heat index called 

humidex (Gaffen et al., 1999). Air temperature decides the amount of water vapour, the air can 

hold. Temperature and humidity affect people’s comfort levels as well as their health. High 

humidity and heat means more water in the air, which can carry odor molecules further, leading 

to considerable stench in summer around bacteria sources such as garbage. Exercise regimens 

need to take into account temperature and humidity to avoid health risks. This is because the 

human body relies on evaporation of sweat to lead to cooling. If the air is both hot and humid, 

the body cannot evaporate the sweat as effectively, which can lead to dehydration, overheating 

http://www.ijher.com/
https://en.wikipedia.org/wiki/Water_vapour
https://en.wikipedia.org/wiki/Perspiration
https://en.wikipedia.org/wiki/Sweating
https://en.wikipedia.org/wiki/Evaporation
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and even death. Researchers found that a joint effect exists between temperature and humidity on 

cardiovascular disease mortality. In conditions of low temperatures and high humidity, 

cardiovascular death rates increased. This could be due to high humidity affecting thrombotic 

risk, combined with the human body’s various cold-stress responses (Eccel, 2012). 

  The Wavelet transform (WT) provides a useful decomposition of time series, in terms of 

both time and frequency, permitting us to effectively diagnose the main frequency component 

and to extract abstract local information from the time series (Antoine, 2004). WT has been 

frequently used for time series analysis and forecasting in the recent years. Models that 

accurately catch the statistical characteristics of the signal play a significant role in studying the 

network, in understanding its dynamics, in designing and controlling the network. We applied 

stationary wavelet transforms by up-sampling the filter coefficients for the extension of signal 

and best forecasts. A function 𝑓(𝑡) is decomposed into a set of basis (generating) functions 

 𝜓𝑗,𝑘(𝑡) called wavelets as following:- 

                                                     𝑓(𝑡) = ∑ ∑ 𝑐𝑗
𝑘

 𝑘∈ℤ𝑗∈ℤ  𝜓𝑗,𝑘(𝑡)                                              (1.1)      

The discrete wavelet coefficient, 

                                                              𝑐𝑗
𝑘=〈𝑓,  𝜓𝑗,𝑘〉 

                                                                 =  ∫ 𝑓(𝑡)
ℝ

𝜓𝑗,𝑘
∗ (𝑡) 𝑑𝑡,  

where  𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘).  

The sufficient condition for the reconstruction of any signal 𝑓 of finite energy by the formula:- 

                                                𝑓(𝑡) = ∑ ∑ 〈𝑓,  𝜓𝑗,𝑘〉 𝑘∈ℤ𝑗∈ℤ  𝜓𝑗,𝑘(𝑡)  

is that the functions { 𝜓𝑗,𝑘: 𝑗, 𝑘 ∈ ℤ}  form an orthonormal basis of 𝐿2(ℝ) . where 𝑗 and 𝑘 are 

integers representing the set of discrete translations and discrete dilations. We can write discrete 

wavelet transforms as:- 

                                                  𝑊𝑗,𝑘𝑓 = ∫ 𝑓(𝑡)2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘) 𝑑𝑡                                          (1.2) 

https://en.wikipedia.org/wiki/Orthonormal_basis
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These wavelets for all integers 𝑗  and 𝑘 produce orthonormal basis. We call  𝜓𝑗,𝑘(𝑡) = 𝜓(𝑡) as 

mother wavelet. Other wavelets are produced by translation and dilation of the mother wavelet. 

A multiresolution analysis consists of a sequence 𝑉𝑗, 𝑗𝜖ℤ of closed subspaces of 𝐿2(ℝ) (Mallat, 

1998; Kumar, 2017) . We can express a function 𝑓(𝑥) in 𝑉𝑗+1 spaces as following:- 

                                           𝑓(𝑥) = ∑ 𝑎𝑗+1
𝑘  𝜙𝑗+1,𝑘 (𝑥) 

Since  𝑉𝑗+1 = 𝑉𝑗 ⊕ 𝑊𝑗, where, 

                                                      𝑉𝑗+1 = 𝑠𝑝𝑎𝑛 (𝜙𝑗+1,𝑘(𝑥))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ,  

                                                          𝑉𝑗 = 𝑠𝑝𝑎𝑛 (𝜙𝑗,𝑘(𝑥))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

  

                                                         𝑊𝑗 = 𝑠𝑝𝑎𝑛 (𝜓𝑗,𝑘(𝑥))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

.  

 

STATIONARY WAVELET TRANSFORMS 

According to wavelet theory, any signal 𝑓 can be decomposed into a set of scaling functions 𝜙𝑗,𝑘 

and wavelet functions 𝜓𝑗,𝑘; 𝑗, 𝑘 ∈ ℤ, as following:- 

                                         𝑓(𝑡) = ∑ 𝑎𝑗
𝑘𝜙𝑗,𝑘𝑘 (𝑡) +  ∑ ∑ 𝑑𝑗

𝑘𝜓𝑗,𝑘𝑘 (𝑡)𝑗
𝑗0

   (1.3) 

 

where scaling coefficients,  

                                          𝑎𝑗
𝑘 = 〈𝑓, 𝜙𝑗,𝑘〉  

                                                = ∫ 𝑓(𝑥) 𝜙𝑗,𝑘(𝑡) 𝑑𝑥,  ∀ 𝑘 ∈ ℤ 

and wavelet coefficients,           

                                                      𝑑𝑗
𝑘 = 〈𝑓, 𝜓𝑗,𝑘〉  

                                                            =∫ 𝑓(𝑡) 𝜓𝑗,𝑘(𝑡) 𝑑𝑡  
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are collectively known as approximation and detailed coefficients (Kumar et al., 2018; Kumar et 

al., 2019).  

 

 

Figure 1: Decomposition of signal  

 

Thus a given signal takes place a new version such as, 

𝑠 = 𝑎1 + 𝑑1 

Here 𝑎1 is approximation and 𝑑1 is detail of signal at various scale or time frames. Therefore, a 

signal 𝑠 can be expressed as:- 

                                                      𝑠 = ∑ 𝑎1
𝑘

𝑘 𝜙1,𝑘(𝑡) + ∑ 𝑑1
𝑘

𝑘 𝜓1,𝑘(𝑡)                                     (1.4) 
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The Stationary wavelet transform (SWT) is a wavelet transform algorithm designed to overcome 

the lack of translation-invariance of the discrete wavelet transform (DWT). Translation-

invariance is achieved by removing the downsamplers and upsamplers in the DWT and 

upsampling the filter coefficients by a factor of 2𝑗−1 in the 𝑗th level of the algorithm. The SWT 

is an inherently redundant scheme as the output of each level of SWT contains the same number 

of samples as the input, so that for a decomposition of N levels there is a redundancy of N in the 

wavelet coefficients. The SWT reconstructions result in lower error values and faster 

convergence compared to DWT. This is achieved by stationary wavelet transform (SWT) 

thresholding, which provides a translation-invariant basis (Nason et al., 1995). For SWT, a 

redundant decomposition can be obtained as:-  

                                               �̃�
2𝑗
2𝑗𝑘+𝑝

= 〈𝑓(𝑡), 2−𝑗 2⁄ 𝜙(2−𝑗(𝑡 − 𝑝) − 𝑘)〉 

                                   �̃�
2𝑗
2𝑗𝑘+𝑝

= 〈𝑓(𝑡), 2−𝑗 2⁄ 𝜓(2−𝑗(𝑡 − 𝑝) − 𝑘)〉                                  

where 𝑝 ∈  {0, … . 2𝑗 − 1}  allows for all the possible shifts in a discrete setting. For 

decomposition to 𝑗𝑚 levels, 2𝑗𝑚  different orthogonal bases can be generated. Each node in binary 

tree is indexed by parameters (𝑗, 𝑝), to which the set of coefficients {�̃�
2𝑗
2𝑗𝑘+𝑝}

𝑘∈ℤ
 is associated. 

Each path from the root of the tree to a leaf corresponds to the set of functions, 

      {2−𝑗 2⁄ 𝜓(2−𝑗(𝑡 − 𝑝𝑗) − 𝑘), 𝑘 ∈ ℤ, 1 ≤ 𝑗 ≤ 𝑗𝑚} ∪ {2−𝑗𝑚 2⁄ 𝜓(2−𝑗𝑚(𝑡 − 𝑝𝑗𝑚
) − 𝑘), 𝑘 ∈ ℤ }  

which forms an orthogonal wavelet basis, resulting in a standard wavelet reconstruction. The 

inverse SWT is defined as the average of all the 2𝑗𝑚  different reconstructions obtained in this 

manner. Unlike other extensions such as dual-tree wavelets, curvelets, and contourlets, these 

transforms are directly based on the standard wavelet transform. They are all based on the same 

wavelet and scaling functions and only differs in terms of shift and decimation. Our intention is 

to call attention to the advantages of the redundant shift-invariant version of the standard discrete 

wavelet transform, i.e., SWT, in comparison with its decimated versions, i.e., discrete wavelet 

https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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transforms (DWT) and discrete wavelet transforms with random shift (DWTRS), which is the 

most widely studied sparsifying transform and most commonly used in practice (Ye et al., 2004).  

The general step j convolves the approximation coefficients at level j–1, with upsampled 

versions of the appropriate original filters, to produce the approximation and detail coefficients at 

level j. This can be visualized in the following figure:- 

 

Figure 2: Filter computation by up-sampling 

Models that accurately catch the statistical characteristics of the signal play a significant role in 

studying and understanding of climate dynamics.  

STUDY AREA AND METHODOLOGY 

Moradabad is a metropolitan area of Uttar Pradesh state in Northern India and is situated at the 

banks of Ramganga River. The latitudinal extent of city is 28°20’N to 29°15’ N and longitudinal 

extent is 78°4’ E to79°E. We have selected Moradabad region as our study area and analyzed its 

humidity and temperature as climate parameters from time period 01/10/2010 to 31/12/2018. The 

quantitative behaviour of humidity of Moradabad for given time period is shown in figure 3. 
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Figure 3: Humidity from 01/01/2010 to 31/12/2018 

When the length of any signal is not divisible by 2𝑗0 ,  where 𝑗0 is the maximum level of wavelet 

decomposition, the signal can be extended. The length of the above signal is 3260 and the 

decomposition level needed for SWT is 10, the tool performs a minimal right periodic extension. 

The tool performs a minimal right periodic extension leading to an extended signal of length 

4096 (because 4096 is the smallest integer greater than 3260 and written in form of 2𝑗0 ).

 

Figure 4: Extension of humidity using SWT 
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With help of discrete wavelet transforms the signal is decomposed in terms of approximation and 

wavelet coefficients. The stationary wavelet transform (SWT) is a wavelet transform algorithm 

designed to overcome the lack of translation-invariance of the discrete wavelet 

transform (DWT). Therefore, by removing the downsamplers and upsamplers in the discrete 

wavelet transforms and upsampling the filter coefficients by a factor of 2𝑗−1 in the 𝑗th level of 

the algorithm, the translation-invariance is achieved. So, our approach is to decompose the 

original time series into scale or frequency related components and model each component 

separately, in order to obtain more accurate models. After obtaining the wavelet decomposition, 

we select the information from each level of decomposition for building the model. In the first 

phase we design predictive models for each of the decomposed components of the original 

series. In the second phase the developed forecasting models are used to predict future values for 

each component (Wong et al., 2003; Xiaohong et al., 2012). The inverse SWT is used in the 

second phase in order to obtain the forecasted signal from the predictions of the components. 

Same procedure is applied for the temperature of Moradabad as climate parameter for the same 

time period in figure 05 and 06. 

 

Figure 5: Temperature from 01/01/2010 to 31/12/2018 

https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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Figure 6: Extension of temperature using SWT 

RESULTS AND DISCUSSION 

In present work, we have analyzed average daily humidity and temperature behaviour of 

Moradabad region during the period 01/01/2010 to 31/12/2018 (9 years) by estimating different 

statistical parameters focusing climate change. From the trend of the signal, it is obvious that the 

humidity and temperature change periodically. With help of stationary wavelet transforms, the 

data of 9 years based upon average daily record is decomposed up to level 10 and extended up to 

4096 points. Some statistical parameters of original and extended signal are as following:- 

S.No. Parameters Original Signal Extended signal 

Humidity Temperature Humidity Temperature 

1 Average 66.4614 25.324 66.32514893 25.16496582 

2 Skewness -0.560177278 -0.412213786 -0.543498895 -0.39936 

3 Kurt -0.275144 -0.9660855 -0.332531978 -0.967927107 

4 Standard Deviation 15.83924759 7.308807478 16.02691902 7.346746436 

5 Correlation -0.522998579 -0.408348038 

Table 1: Statistical parameters of original and extended signal 
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Skewness is a measure that studies the degree and direction of departure from symmetry. 

Negative value of skewness indicates that the humidity and temperature data is skewed to left. 

Skewed left means that left tail is long relative to the right tail. Kurtosis parameter measures the 

peakedness (or flatness) of the probability distribution of any signal (Rockinger et al., 2002).  

Low negative value of kurtosis indicates the weak intermittency in the humidity and temperature 

variability. Standard deviation indicates that how the data points are spread out over a wide range 

of values.  Correlation describes the degree of linear relationship between two functions (or 

signals). The negative values of correlation means they are linearly related with negative slope 

and moderate value means that they are moderately dependent. The average and kurtosis of the 

extended signal are slightly less, while skewness and standard deviation are slightly greater than 

that of original signal for humidity and temperature both.  

CONCLUSION 

From the present analyses, we found that the humidity and temperature time-series of Moradabad 

in last 9 years is weakly intermittent. Skewness & Kurtosis parameters are low and negative, 

standard deviation is high and correlation is moderate & negative in that time period. With help 

of extended signal, we can say that in coming two years, the average value will be decreased, 

there will be little flatness or broadness in probability distribution, slight increment in degree and 

direction of departure from symmetry and data points will be slightly spread far from the mean 

value for humidity and temperature both. By virtue of these results, we can say that spectral 

analysis of humidity and temperature using stationary wavelet transforms provides a simple and 

accurate framework to investigate and forecast the climate behaviour. 
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